Structure of Methyl 6-Oxo-2a $, 3,4,5,5 \mathrm{a} \alpha, 6,7,8,8 \mathrm{a} \alpha, 8 \mathrm{~b} \alpha$-decahydro-2H-naphtho[$1,8-b c]$ -furan-8ba-carboxylate

By Byron Rubin,* Jay Epstein and Laura Brooks
Emory University, Department of Chemistry, Atlanta, Georgia 30322, USA

(Received 17 November 1981; accepted 8 June 1982)

Abstract

C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}\), monoclinic, $\mathrm{P}_{1} / \mathrm{c}, a=8.039$ (2), $b=14.275$ (4), $c=11.730$ (3) $\AA, \beta=118.04$ (2) ${ }^{\circ}$, $Z=4, D_{x}=1.33, D_{m}=1.35(2) \mathrm{Mg} \mathrm{m}{ }^{-3}$. The structure, which was refined to $R=0.053$ with 1765 observations, reveals the stereochemistry at the furannaphthone ring juncture and thus the stereospecificity of the catalytic hydrogenation which produced it.

Introduction. The African army worm after consuming a portion of a leaf from the ajuga plant, Ajuga remota (Labiatae), stops further feeding and eventually dies of malnutrition (Kubo, Lee, Balogh-Nair, Nakanishi \& Chapya, 1976). A compound ajugarin I, (I), has been isolated from this plant and has been shown to have the observed anti-feeding activity (Hosazawa, Kato \& Munakata, 1974).

(I)

(II)

(III)

Creating a de novo synthesis of this natural product requires that the sterochemistry of several intermediates along the proposed synthetic route be determined. The title compound, (II), whose synthesis will be described in detail elsewhere (Goldsmith \& Thottathil, 1982), is prepared by the platinum-catalyzed hydrogenation of compound (III). It was necessary to know if the hydrogen shown as H^{\prime} was cis or trans to the methyl ester. If the ester group and H^{\prime} in compound (II) were cis, then the cyclic ether would more likely undergo ring opening by nucleophilic attack by acetate ion and thus lead to the required intermediate in the ajugarin I synthesis.

Colorless crystals of (II) were grown from an ether-hexane solution. Several crystals were mounted on quartz fibers with epoxy cement with their long axis parallel to the fiber. Preliminary characterization of the

[^0]crystals using precession photographs showed systematic absences in the $h 0 l$ and $0 k 0$ reflections which were consistent with the space group $P 2_{1} / c$. Intensity data was collected using a Syntex $P 2$, four-circle diffractometer. Monochromatic Mo $K a$ radiation $\left(2 \theta_{\max }=12 \cdot 2^{\circ}\right)$ was used for determining the lattice parameters, establishing the orientation matrix and collecting the intensity data. Initially 15 diffraction peaks were machine-centered, and used in an unconstrained least-squares refinement of the lattice parameters and orientation matrix. A total of 2115 unique reflections with $\sin \theta / \lambda<0.59 \AA^{-1}$ were collected using the $2 \theta / \theta$ scan technique. A scan width of 2° was sufficient to collect all of the peak intensity. A variable scan rate ranging from 4.88 to $29.3^{\circ} \mathrm{min}^{1}$ was used. Stationary background measurements were made at the beginning and at the end of each scan for a total time equal to the scan time. No significant fluctuations were observed in the intensities of three reference reflections monitored every 100 reflections. The data were corrected for background, Lorentz, and polarization factors. No absorption correction was applied.

The structure was solved by direct methods and refined by full-matrix least squares using the SHELX 76 (Sheldrick, 1976) program. After anisotropic refinement of the non- H atoms, the H atoms were each located in an electron density difference synthesis and included in the refinement with isotropic thermal parameters. Using the 1765 reflections with $I>2 \sigma(I)$ refinement converged to $R=0.053, R_{w}=0.063\left\{R_{w^{\prime}}=\right.$ $\sum w^{1 / 2}\left(\left|F_{o}\right|-\left|F_{c}\right|\right) / \sum w^{1 / 2}\left|F_{o}\right|$, and $w=1.2216 /$ $\left[\sigma\left(F_{o}\right)^{2}+0.002615 F_{o}^{2}\right]$ (Grant, Killean \& Lawrence, 1969) $\}. \dagger$ The final electron density difference map showed no peaks exceeding $0.32 \mathrm{e} \AA^{-3}$.

Discussion. The observed bond distances and selected bond angles are presented in Fig. 1. The final refined positional parameters are listed in Table 1 and a stereo

[^1]$$
\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}
$$

ORTEP drawing (Johnson, 1965) is shown in Fig. 2. For the naphthofuran the average $\mathrm{C}-\mathrm{C}$ bond distance for the decalin system is $1.524 \AA$. This value is in close agreement with the average $\mathrm{C}-\mathrm{C}$ bond distance observed in a similar ring system: $1.527 \AA$ in the structure of methyl 5α-acetoxymethyl- 4β-methoxy-1-oxo- $1,2,3,4,4 \mathrm{a} \beta, 5,6,7,8,8 \mathrm{a} \alpha$-decahydronaphthalene- $4 \mathrm{a} \beta$ carboxylate (Rubin, Epstein \& Brooks, 1983). The molecular configuration shown in Fig. 2 shows the H on $\mathrm{C}(7)$ to be cis to the ester function on $\mathrm{C}(6)$. The

Table 1. Final atomic positional parameters and isotropic temperature factors with e.s.d.'s in parentheses

	$B_{\text {eq }}=\frac{1}{3} \grave{L i}_{i} B_{i i}$.			
	x	y	z	$\begin{gathered} B_{\mathrm{eq}} / B \\ \left(\AA^{2}\right) \end{gathered}$
C(1)	0.0284 (3)	$0 \cdot 1929$ (2)	0.3857 (2)	$3 \cdot 04$ (5)
C(2)	0.1757 (4)	0.1241 (2)	0.4762 (2)	3.80 (5)
C(3)	0.2216 (4)	0.0486 (2)	0.4045 (3)	4.66 (7)
C(4)	0.2904 (4)	0.0916 (2)	0.3157 (3)	4.78 (7)
C(5)	$0 \cdot 1552$ (3)	$0 \cdot 1636$ (2)	0.2238 (2)	3.50 (5)
C(6)	0.0811 (3)	0.2367 (1)	0.2858 (2)	2.77 (4)
C(7)	-0.0943 (3)	0.2751 (2)	$0 \cdot 1653$ (2)	3.42 (5)
C(8)	-0.2516 (4)	$0 \cdot 3038$ (2)	0.1946 (3)	4.23 (6)
C (9)	-0.3241 (2)	$0 \cdot 2198$ (2)	$0 \cdot 2366$ (3)	4.57 (7)
C(10)	-0.1709 (2)	0.1550 (2)	0.3268 (2)	$3 \cdot 59$ (5)
C(11)	-0.0269 (4)	0.1244 (2)	0.1166 (2)	4.33 (6)
C(12)	0.2150 (2)	0.3182 (2)	0.3507 (2)	$3 \cdot 36$ (5)
C(13)	0.4526 (4)	0.4156 (2)	0.3516 (3)	4.73 (8)
$\mathrm{O}(3)$	0.2156 (4)	0.3651 (2)	0.4352 (3)	9.47 (8)
$\mathrm{O}(4)$	0.3306 (2)	0.3346 (1)	0.3035 (2)	4.58 (4)
$\mathrm{O}(2)$	-0.2075 (3)	0.0804 (1)	0.3567 (2)	$5 \cdot 51$ (5)
$\mathrm{O}(1)$	-0.1579 (2)	0.2012 (1)	0.0724 (2)	4.50 (4)
H(11)	0.0207 (28)	0.2419 (15)	0.4331 (21)	$3 \cdot 27$ (23)
H(21)	0.1307 (37)	0.0972 (17)	0.5343 (27)	4.35 (30)
H(22)	0.2858 (44)	0.1614 (24)	0.5307 (31)	$5 \cdot 70$ (42)
H(31)	0.3131 (37)	0.0065 (20)	0.4637 (25)	4.50 (32)
H(32)	$0 \cdot 1058$ (37)	0.0115 (18)	0.3548 (24)	4.03 (30)
H(4)	0.3064 (38)	0.0445 (22)	0.2638 (28)	5.13 (37)
H(42)	0.4118 (42)	$0 \cdot 1231$ (19)	0.3668 (27)	4.82 (34)
H(51)	0.2140 (34)	$0 \cdot 1947$ (17)	0.1837 (24)	3.56 (28)
H(71)	-0.0526 (38)	$0 \cdot 3320$ (20)	0.1311 (29)	4.60 (34)
H(81)	-0.2015 (41)	$0 \cdot 3573$ (23)	0.2630 (31)	5.75 (40)
H(82)	-0.3436 (37)	$0 \cdot 3342$ (18)	$0 \cdot 1248$ (27)	4.00 (30)
H(91)	-0.4140 (47)	$0 \cdot 1826$ (21)	$0 \cdot 1607$ (35)	6.43 (43)
H(92)	-0.3971 (46)	0.2386 (24)	0.2766 (31)	6.89 (44)
H(111)	-0.0830 (35)	0.0727 (19)	0.1440 (25)	4.31 (32)
H(112)	-0.0080 (40)	$0 \cdot 1007$ (21)	0.0454 (30)	5.26(37)
H(131)	0.5342 (60)	0.4093 (27)	0.4452 (45)	7.91 (54)
H(132)	0.3987 (45)	0.4662 (25)	0.3556 (33)	8.05 (50)
H(133)	$0 \cdot 5520$ (81)	0.4092 (36)	$0 \cdot 3331$ (57)	12.40 (98)

Fig. 1. Bond lengths (\AA) and selected bond angles $\left({ }^{\circ}\right)$. The estimated errors in the least significant digits are shown parenthetically. The numbering shown is that used in Table 1.

Fig. 2. An ORTEP stereodrawing of the title compound. The thermal ellipsoids are drawn at the 33% probability level.
torsion angles for the three rings are presented in Table 2. Examination of the six-membered ring containing $C(7)$ shows it to be in the highly strained twisted-boat conformation while the $C(1)-C(6)$ ring is in the more stable chair conformation.

Table 2. Ring torsion angles $\left({ }^{\circ}\right)$

E.s.d.'s are 0.5°.

Cyclohexane ring	
$C(1)-C(2)-C(3)-C(4)$	-57.7
$C(2)-C(3)-C(4)-C(5)$	53.9
$C(3)-C(4)-C(5)-C(6)$	47.2
$C(4)-C(5)-C(6)-C(1)$	$42 \cdot 2$
$C(5)-C(6)-C(1)-C(2)$	$-44 \cdot 7$
$C(6)-C(1)-C(2)-C(3)$	$-53 \cdot 5$

References

Goldsmith, D. G. \& Thottathil, J. (1982). J. Org. Chem. In preparation.
Grant, D. F., Killean, R. C. G. \& Lawrence, J. L. (1969). Acta Cryst. B25, 374-376.

Hosazawa, S., Kato, N. \& Munakata, K. (1974). Tetrahedron Lett. pp. 3753-3756.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Kubo, I., Lee, Y.-W., Balogh-Nair, V., Nakanishi, K. \& Chapya, A. (1976). Chem. Commun. pp. 949-950.
Rubin, B., Epstein, J. \& Brooks, L. (1983). In the press.
Sheldrick, G. M. (1976). SHELX 76 Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1982). B38, 2961-2963

Structure of N-[1-(2-Hydroxy-2-phenylethyl)-4-piperidyl]- N-phenylpropanamide Hydrochloride (R4333*), an Analgesic of the Fentanyl Family

By André Michel, Brigitte Lebrun, Guy Evrard and François Durant \dagger
Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires de Namur, 61 rue de Bruxelles, B-5000 - Namur, Belgium

(Received 28 April 1981; accepted 8 June 1982)

Abstract

C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} . \mathrm{HCl}, P 2_{1} / c, a=12 \cdot 104\) (5), $b=11.560(5), c=15.013(5) \AA, \beta=101.14(5)^{\circ}$, $M_{r}=388.9, D_{m}=1.25(1), D_{x}=1.25$ (2) $\mathrm{Mg} \mathrm{m}^{-3}$, $Z=4, T=293 \mathrm{~K}, R=0.06$ for 2538 reflexions. The conformation is similar to that found for other compounds of the fentanyl family. Packing is governed by van der Waals interactions; the chloride ion does not contribute to the formation of intermolecular H bonds.

Introduction. The crystal structure determination of the title compound (I) is part of a more general study of conformations for narcotic analgesics, particularly those of the fentanyl family. Some of these compounds are very potent analgesics (Van Daele, De Bruyn, Boey, Sanezuk, Agten \& Janssen, 1976); in particular R4333 was revealed as being more than 150 times more active than meperidine (Janssen \& Van Der Eycken, 1968). Crystals have been obtained from a chloroform/ethanol mixture slowly evaporated. The space group was determined by photographs. Final cell dimensions and intensities were measured on a Nonius CAD-4 four-circle computer-controlled diffractometer.

[^2]Table 1. Instrumental settings for the data collection
Source $\mathrm{Cu} K \bar{\alpha} \quad \lambda=1.54178 \AA$
Graphite monochromator
Scan $(1-2 \theta$
$\Delta 2 \theta=0.80+0.30 \operatorname{tg} \theta\left(^{\circ}\right)$
Aperture $=2.5+0.5 \mathrm{tg} \theta(\mathrm{mm})$
Confidence level: 2.5σ, where $\sigma^{2}=S=B+(0.03 S)^{2}, S$ being the scan and B the background count
$2 \leq \theta \leq 70^{\circ}$
Total number of independent reflexions 392 I
Total observed reflexions 2538

The instrumental settings are listed in Table 1. No corrections were applied for absorption.

The structure was solved with MULTAN 78 (Main, Woolfson, Lessinger, Germain \& Declercq, 1978). All non-H atoms were located on the most probable E map computed with the 208 largest $\langle E\rangle$. Refinement was performed (Sheldrick, 1976) by Fourier maps and full-matrix anisotropic least squares for non-H atoms. Their final coordinates are listed in Table 2. H-atom coordinates were calculated but not refined. The final $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|=0.06$ for the observed reflexions. \ddagger

[^3]
[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36982 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 © 1982 International Union of Crystallography

[^2]: * Janssen Pharmaceutica internal code number.
 \dagger To whom correspondence should be addressed.

[^3]: \ddagger Lists of structure factors, anisotropic thermal parameters and H atom coordinates have been deposited with the British Library H atom coordinates have been deposited with the British Library
 Lending Division as Supplementary Publication No. SUP 36976 (14 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
 (C) 1982 International Union of Crystallography

